Trapped Ions Make Impeccable Qubits

نویسنده

  • Jungsang Kim
چکیده

The realization, two decades ago, that quantum mechanics can be a powerful resource to speed up important computational tasks [1] led to intense research efforts to find adequate physical systems for quantum computation. One of the hurdles to a viable technology is the requirement to prepare, manipulate, and measure quantum bits (qubits) with near perfect accuracy: Imperfect control leads to errors that can accumulate over the computation process. Techniques like quantum error correction and fault-tolerant designs can, in principle, overcome these errors. But these strategies can be successful only if the error probabilities are lower than a threshold value. They also increase the complexity of the required quantum hardware, since they require additional qubits. Recent calculations [2] suggest that an error probability of less than 1% would enable fault-tolerant codes, and that lower error probabilities dramatically decrease the number of qubits required for such codes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast coherent excitation of a trapped ion qubit for fast gates and photon frequency qubits.

We demonstrate ultrafast coherent excitation of an atomic qubit stored in the hyperfine levels of a single trapped cadmium ion. Such ultrafast excitation is crucial for entangling networks of remotely located trapped ions through the interference of photon frequency qubits, and is also a key component for realizing ultrafast quantum gates between Coulomb-coupled ions.

متن کامل

Quantum Information Processing with Trapped Ion Chains

Title of dissertation: QUANTUM INFORMATION PROCESSING WITH TRAPPED ION CHAINS Timothy Andrew Manning, Doctor of Philosophy, 2014 Dissertation directed by: Professor Christopher Monroe Joint Quantum Institute, University of Maryland Department of Physics and National Institute of Standards and Technology Trapped atomic ion systems are currently the most advanced platform for quantum information ...

متن کامل

On the transport of atomic ions in linear and multidimensional ion trap arrays

Trapped atomic ions have become one of the most promising architectures for a quantum computer, and current effort is now devoted to the transport of trapped ions through complex segmented ion trap structures in order to scale up to much larger numbers of trapped ion qubits. This paper covers several important issues relevant to ion transport in any type of complex multidimensional rf (Paul) io...

متن کامل

Building Blocks for a Scalable Quantum Information Processor Based on Trapped Ions

VJe describe the underlying concept and experimental demonstration of the basic building bloclts of a scalable quantum information processor archikcture using trapped ion-clubits. The trap structure is divided into many subregions. In eacl~ several ion-qubits can be trapped in complete isolation from all the other ion-qubits in the system. In a particular subregion, ion-qubits can either be st,...

متن کامل

Quantum information processing with trapped ions.

Experiments directed towards the development of a quantum computer based on trapped atomic ions are described briefly. We discuss the implementation of single-qubit operations and gates between qubits. A geometric phase gate between two ion qubits is described. Limitations of the trapped-ion method such as those caused by Stark shifts and spontaneous emission are addressed. Finally, we describe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015